Introduction

The mandible, or the lower jaw bone, is one of the twenty-two bones that make up the skull and the only one of those bones that is not fused to its neighbors. It is the strongest and most massive bone in the face. The mandible plays a vital role in many common tasks, including chewing, speech and facial expression [1-3]. Given its prominent anatomic location, mandibular bone fractures (57%) is the tenth most common fracture in the human body and second most of the facial bones next only to nasal bones [4-7]. Mandibular fractures occur most commonly among males in their 30s [4,5].

Among the mandibular bone fractures, condylar region is the most frequent site ranges from 20% to 35% of all cases [8-12]. The condyle represents a structural weak point in the mandibular skeleton because of its shape and the slenderness of its neck and sometimes its being fractured avoids more serious consequences such as fractures of the base of the skull which can traumatically interrupt propulsive strength [9,10]. Condylar fractures are usually resulted from a direct blow to the chin or to the lateral side of the jaw caused by Road traffic accidents, violence, accidental falls and sporting injuries [13-19].

Mandibular condylar fractures are classified according to the anatomic location into intracapsular and extracapsular and degree of dislocation of the articular head [20-25]. Concerning the management of mandibular condyle fracture, there are different methods of condylar fractures treatment with a great deal of discussion and controversy due to differences in outcome results of various retrospective and prospective studies [26-35]. For each type of condylar fractures, the treatment procedures must be chosen taking into consideration the presence of teeth, level of the fracture height, patients adaptation, patients masticatory system, disturbance of occlusal function, deviation of the mandible, internal derangements of the TMJ and ankylosis of the joint [36-40].

There are two principal therapeutic approaches to condylar fractures: Open reduction or surgical treatment and closed reduction or non
surgical (functional) treatment [41-46]. In this regard, many studies covering the treatment modalities of condylar fracture were reported [47-53]. Almost without exception, published studies described acceptable results with either of the two treatment options. Some stated a preference for closed reduction, owing to significant disadvantages of surgery, like scarring, postoperative pain or facial nerve paralysis [54-59]. Others, on the contrary, described a preference for open reduction and internal fixation, for better anatomical reduction, range of motion and/or functional outcomes [49-58]. Consistent with the aforementioned data, the present study was designed to investigate and compare the clinical and radiological outcomes between maxillomandibular fixation and pure conservation in management of mandibular condylar head fractures in children, based on the current literature.

Materials and Methods

This retrospective study was conducted with the patients who had been referred for treatment of mandibular condyly fractures of head and neck types at the Department of Maxillofacial Surgery, Faculty of Medicine, Assiut University, Egypt, during the period between 2011G - 2016G. Twenty four patients with already diagnosed isolated mandibular condylar head fractures were included in this study, 14 males and 10 females ranging in ages from 5 – 15 years with a median of 10 years. The locations of condylar head injuries were as followed: 12 cases involved bilateral condyle, 6 cases concerned right condyle and 6 cases occupied left condyle. This work was conducted after obtaining approval from the university ethical committee and informed consent was obtained from the patient after thoroughly explaining the advantages and disadvantages of nonsurgical and surgical treatment options roentgenograms i.e. OPG (Orthopantomogram) and computed tomography scanning (Figure 1 & 2). Exclusion criteria were a history of medical problems or psychiatric disorders or mental retardation and impairments in mandibular function or pain in the mandibular locomotor system before fracturing the mandibular condyle. The 24 patients were divided into two equal groups, each group includes 12 patients (7 males and 5 females). In group 1, 12 patients (7 males and 5 females) had undergone non surgical management of mandibular condylar fractures which included closed reduction with maxillomandibular fixation ranging from 2-3 weeks followed by physiotherapy. The other 12 patients (50%) of group 2 were undergone pure conservation only without any surgical intervention for the same period.

The other 12 patients (7 males and 5 females) of group 2 were undergone pure conservation only without any surgical intervention for the same period (2-3 weeks). Post operative follow up period for both groups was ranged from 3-12 months. Initially, neither group had any patients with post-treatment malocclusion or permanent nerve injury. In group 1 or in closed reduction group, the maximum interincisal or mouth opening after 2 months was ranged from 28-36 mm (average 32mm), while development of ankylosis after 2 months were reported in 3 patients out of 12 patients. In group 2, the maximum mouth opening after 2 months was ranged from 28-37 mm (average 32.5mm). The most interesting finding of group 2 was absence of development of ankylosis after 2 months. Only pain in TMJ was noted in 3 cases (12.5%) of bilateral condylar head fractures of group 2 which got subsided gradually on follow up. None of the patients in both groups had malocclusion or facial nerve palsy. The results of group 1 and group 2 are summarized in table 2.

There was a statistically significant difference in the range of maximum mouth opening in both groups after 3-12 months of post operative follow up period. Since the maximum mouth opening in group 1 was ranged from 28-36 mm (average 32mm), while in group 2 it was ranged from 28-37 mm (average 32.5mm). There was also a statistically significant difference in the development of ankylosis in both groups that was only reported in 3 patients out of 12 patients of group 1. Similarly, pain was significantly reported in 3 patients of group 2.

Table 1: Clinical data of studied patients

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Group 1</th>
<th>Group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of patients.</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Gender (female/male) .</td>
<td>5 / 7</td>
<td>5 / 7</td>
</tr>
<tr>
<td>Age at injury (years).</td>
<td>5 – 15 years</td>
<td>5 – 15 years</td>
</tr>
<tr>
<td>Side of condylar fracture.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Right</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>• Left</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>• Bilateral</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>
Table 2: Results

<table>
<thead>
<tr>
<th></th>
<th>GROUP I</th>
<th>GROUP II</th>
</tr>
</thead>
<tbody>
<tr>
<td>TREATMENT PLAN</td>
<td>IMF for 2-3 weeks</td>
<td>No surgical intervention</td>
</tr>
<tr>
<td>MOUTH OPENING (mm)</td>
<td>28-36 (32mm average)</td>
<td>28-37 (32.5mm average)</td>
</tr>
<tr>
<td>ANKYLOSIS DEVELOPMENT</td>
<td>3/12</td>
<td>0/12</td>
</tr>
<tr>
<td>TMJ PAIN</td>
<td>0/12</td>
<td>3/12</td>
</tr>
<tr>
<td>MALOCCLUSION</td>
<td>0/12</td>
<td>0/12</td>
</tr>
</tbody>
</table>

Figure 1: Preoperative OPG showing bilateral condylar head fracture

Figure 2: Preoperative CTSCAN showing fractured right condylar head.

Figure 3: Preoperative 3D showing fractured right condylar neck.

Figure 4: Postoperative OPG showing upper and lower arch bar

Figure 5: Causes of condylar head fracture

Discussion

In the International Literature, fractures of the mandible that involve the condyle ranges from 20% to 35% [8-12]. Injury to the mandibular condyle deserves special consideration apart from the rest of the mandible because of its anatomical differences and healing potential [9,10]. Up to the present, numerous therapeutic techniques have been used for management of mandibular condylar fractures with many arguments in favor of one treatment or a specific type of treatment based not only on personal experience, preference of the clinic or the tradition in the country, but also founded on results of retrospective studies or small prospective studies [8-11].

In the present study, the therapeutic approaches of maxillomandibular fixation and pure conservation for management of mandibular condylar head fracture in children were investigated and compared clinically and radiologically. In group 1 or closed reduction group, the maximum interincisal or mouth opening after 2 months was ranged from 28-36 mm (average 32 mm), while in group 2 or pure conservation group, the maximum mouth opening after 2 months was ranged from 28-37 mm (average 32.5mm). This finding observed reduced mouth opening in closed reduction group 1 more than that in pure conservation group 2 as evidenced clinically and radiographically. Based on the previous result, it has been revealed that pure conservation approach used in group 2 provides safer and better reduction of mandibular condylar head fracture in children and this finding correlates with the study [59-62].

This result also showed statistically significant difference in maximal mouth opening between both groups, since group 2 exhibits good mouth opening post operatively when compared to closed group 1, which also correlates with the study of Eckelt et al. [63]. In contrary to Ragupathy K., who studied outcomes of surgical versus nonsurgical treatment of mandibular condyle fractures and concluded...
that nonsurgical treatment gives satisfactory clinical results, though
the condyle is not anatomically normal in radiographs, whereas
surgical treatment provided more accurate results clinically as well
as radio graphically [64].

Concerning the development of ankylosis after 2 months in 3 patients
out of 12 patients of group 1 that treated by closed reduction with
maxillomandibular fixation ranging from 2-3 weeks followed by
physiotherapy was attributed to less physiotherapy and relatively
reduced vertical ram us height in these patient more than that in
other patient of the same group. This finding correlates with the
study of Ellis et al., who provided the most detailed and thorough
comparison of the outcomes of the closed and open approaches to
mandibular fractures in a series of 9 publications [65]. They realized
that the closed approach is associated with numerous problems.
These include chronic pain, ankylosis, malocclusion, asymmetry,
limited mobility and gross radiographic abnormalities. In contrast
to Handschel J et al., who compared the 1 to 5-year postoperative
findings of 20 patients treated with ORIF to 14 who were managed
conservatively [66]. The conservative group was treated with
maxillomandibular fixation for 2 weeks and then postoperative
physiotherapy. The ORIF group was managed with wire or rigid
osteosynthesis. They found that deviation on opening occurred in
64% of patients treated conservatively compared with 10% managed
with ORIF.

Noteworthy, Haug et al. 5 reported the long-term postoperative
results of 10 patients treated with closed reduction and 10 patients
by ORIF [67]. There were no statistically significant differences
in malocclusion found between the ORIF and closed reduction.
Satisfactory results do not always require exact anatomical
repositioning. Even when impaired growth of the mandibular ramus
on the fractured side is apparent, good aesthetic and functional results
are possible. Pain at TMJ was noted in 3 cases (12.5%) of bilateral
condylar head fractures of group 2 which got subsided gradually on
follow up. This findings correlates with the observation by Worsae
et al. [68]. Finally, there no severe clinical complications in either
treatment group.

Based on the above findings this study concludes that patients treated
by closed reduction give reasonably good clinical results, though
the condyle is not anatomically normal in radiographs. Whereas patients
treated by pur conservation only without any surgical intervention
show excellent results clinically as well as radiographically. This
study yields functional result which were clearly in favor of pure
conservation only open condylar head fractures in children. Perhaps
a study conducted on larger number of patients with longer post
operative follow up will throw more light on the subject.

References
of paediatric mandibular condylar fractures with screw-based
41: 55-60.
Abnormal mandibular growth and the condylar cartilage. Eur
7. Lindahl L, Hollender L (1977) Condylar fractures of the
mandible: a radiographic study of remodelling processes in
A retrospective study of temporomandibular joint ankylosis
secondary to surgical treatment of mandibular condylar
temporomandibular joint soft tissue injuries in dislocated
and nondislocated mandibular condylar fractures. AJNR Am J
Magnetic resonance imaging evaluation of temporomandibular
joint and associated soft tissue changes following acute condylar
Condylar injury: magnetic resonance imaging findings of
temporomandibular joint soft-tissue changes. Int J Oral
et al. (2004) Mandibular condyle fractures: determinants of
protocols and outcome for the treatment of maxillofacial
fractures in children: 9 years’ experience. J Cranio maxillofac
Surg 38: 511-516.
15. EsKITasGIoulu T, Ozayzan G, Coruh A, Gunay G, Yakul
E (2009) Retrospective analysis of two hundred thirty-five
16. Neff A, Chossegross C, Blank JL, Champsaupur, Cheyney F,
et al. (2014) Position paper from the IBRA Symposium on
Surgery of the Head--the 2nd International Symposium for
Condylar Fracture Osteosynthesis, Marseille, France 2012. J
Cranio maxillofac Surg 42: 1234-1249.
17. Rampaso CL, Mattioli TM, de Andrade Sobrinho J, Rapoport
retrospective study of using removable occlusal splint in the
(2012) Conservative treatment of unilateral displaced condylar
fractures in children with mixed dentition. J Craniomaxillofac
(2012) Conservative treatment of unilateral displaced condylar
fractures in children with mixed dentition. J Cranio maxillofac
(2013) Comparison of nonsurgical treatment options in pediatric
condylar fractures: rigid intermaxillary fixation versus using
22. Zhou HH, Han J, Li ZB (2014) Conservative treatment of


Copyright: ©2018 Hamada Mahran. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.